
AIAA JOURNAL

Vol. 40, No. 9, September 2002

Numerical Prediction of Fluid-Resonant
Oscillation at Low Mach Number
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A method (governing equation set and numerical procedure) suited to the numerical simulationof � uid-resonant
oscillation at low Mach numbers is constructed. The new equation set has been derived under the assumption that
the compressibility effect is weak. Because the derived equations are essentially the same as the incompressible
Navier–Stokes equations, except for an additional term, we can apply almost the same numerical procedure
developed for incompressible � ow equations without dif� culty. With application of a pressure-based method that
treats the continuity equation as a constraint equation for pressure, the stiffness problem that arises in solving the
usual compressible � ow equations under low Mach number conditions has been alleviated. To verify the present
method, we apply it to the � ows over a three-dimensional open cavity. The results show that strong pressure
� uctuations occur at speci� c � ow velocities and that the frequency of the pressure � uctuations is locked in at
the Helmholtz resonant frequency of the cavity. Thus, the present method is con� rmed to have the capability of
predicting � uid-resonant oscillation in low-Mach-number � ows.

Nomenclature
Cp = pressure coef� cient
c = speed of sound
f = frequency of pressure � uctuation
h i = grid width in i direction
L = reference length
M = Mach number
p = pressure
Re = Reynolds number
S = entropy
t = time
Ui = � ux velocity component in i direction
U0 = reference velocity
u i = velocity component in i direction

.u1; u2; u3/ D .u; v; w/
xi = Cartesian coordinate in i direction
1t = dimensionless time step
¹ = dynamic viscosity
½; ½ 0 = density

Subscript

0 = reference value

Superscript

n = number of time steps

I. Introduction

F LUID-RESONANT oscillation (Fig. 1) is a very interesting
phenomenon,from both the physical and the engineeringview-
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points.Even in low-Mach-number� ows, once this phenomenonoc-
curs, it sometimes fatally damages the device. Therefore, it is very
important to predict whether � uid-resonantoscillationoccurs in the
operating condition of � uid machinery, as well as its magnitude if
it does occur.

For example, when a vehicle runs at speci� c speeds with the sun-
roof or window open, the so-called wind-throb phenomenonoccurs
in thevehiclecabin.It generatesa highnoise levelwith relativelylow
frequency, ranging from 10 to 50 Hz. Its magnitude sometimes ex-
ceeds130 dB, causingunacceptablediscomfort to the driver and the
passengers.This phenomenon is considered to be the kind of � uid-
resonant oscillation categorized by Rockwell and Naudascher.1 In
that phenomenon, the periodic vortex shedding over the opening of
the sunroof or window excites the resonance in the vehicle cabin,
which behaves like a Helmholtz resonator. However, the wave ef-
fects of the resonance in� uence the vortex shedding, which means
that they are strongly coupled with each other. Such a � ow is ob-
served and of interest in many areas of engineering, for example,
landing-gearwells and aircraft surface-mounted instrumentation.

To predict the wind-throb phenomenon numerically, there have
been attempts2 to perform incompressible unsteady simulations.
From such simulations, however, one can never predict the phe-
nomenon by which an extremely large noise is generatedat speci� c
speeds and in a speci� c frequency range because the � uid-resonant
oscillationcan not be essentially simulated without considering the
compressibility effect of the � ow. Nevertheless, compressible un-
steady simulation has the possibility of predicting � uid-resonant
oscillation theoretically.However, it is not feasible to perform full
compressible unsteady simulation of the � ow around a vehicle be-
cause it results in the so-called stiffness problem in low-Mach-
number � ows, which creates severe convergence problems leading
to inef� ciency and inaccuracy.

Several approacheshave been developedfor simulating the aero-
acoustic sound at low Mach numbers, which also results from the
weak compressibility of the � ow. For example, Hardin and Pope3

introduced a scheme called expansion about incompressible � ow
(EIF). The EIF approachsplits the � ow� elds into an incompressible
part and a perturbationpart. However, this approach does not allow
acousticbackscatterof the perturbationpart into the incompressible
part and is considerednot to have the capability of predicting � uid-
resonant oscillation.

Thus, in this paper, we derive new basic equations suited for the
simulation of � uid-resonant oscillation at low Mach numbers. The
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Fig. 1 Fluid-resonant oscilla-
tion.

equations are derived from the compressible Navier–Stokes equa-
tions by assumingthat the compressibilityeffect is weak and related
to the pressuredeviationfrom the referencevalue. The resultantun-
known variables of the equations are u, v, w, and p, so that we
can apply almost the same numerical procedure developed for the
incompressible � ow equations. Therefore, the computational cost
of the present method is comparable to that of the incompressible
� ow calculation. To verify the capability of the present method in
simulating � uid-resonant oscillation, we apply it to � ows over a
three-dimensionalopen cavity. When the computational results are
compared with the experimental data, the validity of the present
method is carefully examined.

II. Methods
A. Derivation of Basic Equations

Consider compressible Navier–Stokes equations
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in which a tilde indicates dimensional value. We introduce the fol-
lowing dimensionless values:

½0 D . Q½ ¡ Q½0/= Q½0; p D . Qp ¡ Qp0/
¯¡
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Note that the density ½ 0 and the pressure p are the dimensionless
values of the deviation from the reference value. By introducing
thesedimensionlessvalues,we can rewritethecompressibleNavier–
Stokes equations as follows:
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To obtain a new equation set suited to the simulation of � uid-
resonant oscillation in low-Mach-number � ows, we make the fol-
lowing assumptions in the preceding equations:

1) For the density, the deviation from the reference value is
small enough to assume ½ 0 ¿ 1 because ½0 D O .M2/ in low-Mach-
number � ows. Thus, it is expressed as

1=.1 C ½0/ ¼ 1 (7)

2) When the entropy is assumed to be constant, the deviation in
density can be related to the deviation in pressure as follows:
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3) Because @um=@xm D O.M2/ as seen in Eq. (9), the effect of
that term in Eq. (6) is negligibly small in comparison with the term
@u i=@x j C @u j =@ xi in low-Mach-number � ows.

These assumptions, which are considered to be reasonable in
relatively high-Reynolds-number � ows without a signi� cant heat
source, enable us to obtain the following new equation set:
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In the limit M ! 0, Eqs. (9–11) becomes identical to the incom-
pressible Navier–Stokes equations. In what follows, Eqs. (9–11)
are employed as the basic equations in the present study.

B. Characteristics of Present Basic Equations
It is apparent that the derived equations are essentially the same

as the incompressibleNavier–Stokes equations except for the addi-
tional term that expressesthedeviationfromthecontinuitycondition
in the incompressible� ow. This term is O.M2/ and disappearsin the
incompressible � ow condition. However, we maintain this term in-
tentionallybecause it is expected to enable us to introduce the weak
compressibilityeffect into the � ow calculation.In other words, only
this term can yield the essential difference from the incompressible
� ow calculation in the present study.

Next, we compare these equationswith the compressibleNavier–
Stokes equations.The dimensionlesspressure p in the present basic
equations denotes the deviation from the reference value. The cor-
respondingdimensional value Qp ¡ Qp0 is estimated as follows, if we
suppose the low-Mach-numbercondition:
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This describes that the pressure deviation in the present basic equa-
tions is M 2 times as small as the pressure Qp in the compressible
Navier–Stokes equations. In the same way, the dimensional value
Q½ ¡ Q½0 corresponding to the dimensionless density ½0, which is re-
lated to the pressure p in the present basic equations, is estimated
as follows:

j Q½ ¡ Q½0j ¼ O
¡
M2 Q½0

¢
¼ O.M2 Q½/ (13)

It is shown that the densitydeviationin thepresentbasic equationsis
also M2 times as small as the density Q½ in the compressibleNavier–
Stokes equations. Consequently, it is evident that the computation
based on the present basic equations has a great advantage over the
computation based on the compressible Navier–Stokes equations.
For example, for the � ow around ground vehicles where the Mach
number is 0.1 at most, we can directly treat the value, which is
approximately 0.01 times as small as in the computation based on
the full compressible Navier–Stokes equations. This yields a great
advantagein computationalef� ciencyor computationalaccuracy in
practical use.

C. Numerical Methods
As mentionedbefore,theweakcompressibilityeffect is takeninto

considerationby the additional term in Eq. (9). Moreover, because
the unknown variables of the present basic equations are u; v; w,
and p, we can apply almost the same numerical procedure devel-
oped for the incompressible � ow calculation. The most important
point in solving the presentbasic equationsis to employ a numerical
method that satis� es the continuity condition in the incompressible
� ow calculation with high accuracy to capture the weak compress-
ibility effect correctly because a numerical error in the continuity
condition can possibly hide the compressibility effect. To satisfy
this requirement, we use a collocated grid system,4;5 which is one
of the pressure-basedmethods used mainly for incompressible� ow
calculations. The collocated grid system is ascertained to satisfy
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Fig. 2 Collocated grid in x1 –x2
plane.

the continuity condition with high accuracy in incompressible � ow
calculationsand is also con� rmed to yield a nonoscillatorypressure
� eld.We modify the collocatedgrid systemapplicableto the present
basic equations as described next.

To simplify the description, we consider the rectangular grids
shown in Fig. 2. The collocated grid system de� nes the velocity
components u i and the pressure p at the center of the cells and, at
the same time, arranges the auxiliary � ux velocity components Ui

at the center of the cell faces. The momentum equations are solved
for u i . The continuity equation is evaluated by using Ui , which is
interpolated from u i by a special procedure.5 The � ux velocity Ui

is then also used as the convectionvelocity in the momentum equa-
tions, that is, u j in the second term of Eq. (10). To be consistentwith
this treatment, we also use Ui as u j in the third term of Eq. (10),
which disappears in the incompressible � ow condition. For spa-
tial discretization,a second-ordercentral difference scheme is used
except for the convective term of Eq. (10), to which the QUICK
scheme is applied.We employ no turbulencemodel in this analysis.
This method is often called coherent structure capturing,6 which is
able to capture the vortex structures with high accuracy if the size
of vortex is relatively large.

The Crank–Nicolson method is employed for the time advance-
mentof Eq. (10)exceptfor thepressureterm,forwhich thebackward
Euler method is used. A simpli� ed marker and cell-like method is
used for the couplingbetween the velocity and the pressure � eld. In
this method, the continuityequation is applied to the next time step,
n C 1. The additional term in the continuity equation [the � rst term
of Eq. (9)] is discretized as follows:
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where ± j =± j x j is the spatial discretizationby means of the second-
order central difference scheme.

The whole solution procedure is summarized as follows:
1) The intermediate velocity u¤

i is obtained by using the pressure
at the previous time step n:
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2) The contributionfrom the pressure term is subtractedfrom the
intermediate velocity u¤

i :
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3) The intermediate � ux velocity U ¤¤
i at the center of the cell

faces is interpolated from u¤¤
i at the center of the cells.

4) The following equation is solved for the pressure pn C 1 at the
next time step:
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5)The velocityat the next time step is evaluatedusingtheobtained
pressure pn C 1:
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Fig. 3 Three-dimensional open cavity.

Fig. 4 Computational domain.
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By this procedure, one time step is advanced. In the limit M ! 0,
Eq. (18) becomes identical to the well-known Poisson equation for
pressure:
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Because the pressure is fully implicitly solved by using Eq. (18),
the stiffnessproblemcausedfrom the disparitybetween the acoustic
timescale and the convectiveor viscous timescale can be alleviated.
For simplicity,we explained the method for rectangulargrids.How-
ever, it is easily applied to curvilinear grids in the same manner, as
shown by Rhie and Chow.5

III. Experimental and Computational Arrangements
A. Three-Dimensional Open Cavity Flows

To verify whether the present method can truly simulate � uid-
resonantoscillationin low-Mach-number� ows, we apply it to � ows
over a three-dimensional open cavity, which can be considered to
simulate a vehicle cabin with a sunroofopening.The detailed shape
of the open cavity is shown in Fig. 3. The experiments are per-
formed for comparison with the computations. The experimental
model of the opencavity is testedin a closed-returnwind tunnelwith
a 0:4 £ 0:4 m rectangular open test section, and the pressure � uc-
tuation is measured at the center of the cavity bottom by a pressure
sensor. The measurements are made for various levels of incoming
� ow velocity within a range of 6–54 m/s.

B. Calculation Conditions
The calculationsareperformedcorrespondingto theexperimental

� ow conditions. To simplify the calculation conditions, we � x the
Reynolds number at 2 £ 105 based on the opening length lc and the
representativevelocity 30 m/s and vary only the Mach number with
a change in incoming � ow velocity U0. This setting of conditions is
assumed to yield little difference from the measurements because
the � ows have little dependence on the Reynolds number, at least
behind the separationat the upstream edge of the cavity opening. In
these conditions, the change in the results, according to the change
in the incoming � ow velocity, is caused only by the additional term
in Eq. (9). The speed of sound is set at 343 m/s.

Figure 4 shows the computationaldomain. The boundary condi-
tions are speci� ed as follows: 1) inlet, uniform � ow (u D 1, v D 0,
w D 0, p D 0); 2) outlet, Neumann condition (@ui =@x D 0); 3) solid
wall, arti� cial wall condition; 4) upper wall, slip condition (v D 0,



1826 INAGAKI ET AL.

@u i=@y D 0); and 5) spanwise direction, periodic boundary condi-
tion. The computational domain approximately corresponds to the
experimentalmodel. The upperwall is set 10£ lc above the opening
of the cavity. Because the periodic boundary condition is applied in
the spanwise direction, the width in the spanwise direction some-
what differs from that in the experimental model. Note that we set
the Dirichlet condition for pressure at the inlet boundary because
the present basic equations involve the time-differential term of the
pressure that does not appear in the incompressibleNavier–Stokes
equations.

The arti� cial wall condition used in this analysis is the following
three-layer wall condition modi� ed from the two-layer wall condi-
tion proposed by Werner and Wengle7:
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where u p is the velocity component parallel to the wall, yp is the
distance from the wall, and ¿w is the wall friction stress.This type of
wall condition is equivalent to the no-slip condition when the grid
resolutionin the directionnormal to the wall surface is high enough.
On the other hand, when the grid resolution is not suf� ciently high,
it is expected that this wall condition suppresses the decrease in the
calculation accuracy. Note that, in this analysis, the grid resolution
is relatively coarse only in the spanwise direction in the cavity. This
grid arrangement is assumed to have little signi� cant in� uence on
the results. Except for the limited part, � ne grids are used, where
the wall condition becomes substantially identical with the no-slip
wall condition.

We also employ the overlaid grid system8 to facilitate grid gener-
ation and to reduce the computational cost. The computational do-
main is divided into three subgrid regions shown in Fig. 5. Grids 1
and2 are shown in Fig. 6. The numberof pointsof each grid is shown
in Table 1. The total number of grid points is about 430,000. The
minimum grid spacing is 1 £ 10¡3lc , and the dimensionless time
step is set to 1 £ 10¡3lc=U0. As the initial condition, the result of
the incompressible � ow calculation is used.

To check grid convergence,we also execute the calculation with
� ner grids for U0 D 22, 30, 34, 38, and 46 m/s. The number of grid
points is shown in Table 1. The number of points of grids 1 or 2 is
over three times as large as that in the standard case. On the other

Table 1 Computational grid points

Grid Grid points

1 76 £ 51 £ 52 D 201,552
(Fine case) (100£ 73 £ 86 D 627,800)
2 66 £ 50 £ 28 D 92,400
(Fine case) (92 £ 73 £ 46 D 308,936)
3 100£ 44 £ 30 D 132,000
(Fine case) (")

Fig. 5 Overlaid grid system.

Grid 1 Grid 2

Fig. 6 Computationalgrids.

Fig. 7 Sound pressure levels.

hand, grid 3 is the same grid as in the standard case because grid 3
is considered to have smaller in� uence on the pressure � uctuation
at the measuring point than grids 1 and 2. In this case, the minimum
grid spacing is 5 £ 10¡4lc , and the dimensionless time step is set to
5 £ 10¡4lc=U0.

IV. Results and Discussion
In Fig. 7, the calculated pressure � uctuations at the center of the

cavity bottom are compared with the experimental data in the scale
of sound pressure levels (decibels). Note that, in what follows,U0 is
de� ned by U0 D Mc. Some peaks are clearly recognized in the plot
of pressure � uctuations vs � ow velocity. The computational results
very successfullypredict this feature.Althoughthe � ow at the center
of the cavitybottomis veryweak, the pressure� uctuationlevelat the
peaks is very high. Moreover, as shown in Fig. 8, the time history of
pressureunderthoseconditionshas strongperiodicityand is almosta
sinecurve.These resultssuggest that the strongpressure� uctuations
are probablycausedby resonance.Such a � uctuationhas neverbeen
detected in the results of incompressible � ow calculation, which
is shown by the dotted line in Fig. 7. Thus, it is thought that the
peakscorrespondto the occurrenceof � uid-resonantoscillations.In
Fig. 9, the pressure � uctuationsare shown in terms of the root mean
squareofpressurecoef� cient� uctuationsCp0

rms , wherethepeaksare
more clearly identi� ed. The computational results agree well with
the experimental data on the velocities at which the peaks occur.
The peaks are found to occur at three velocity levels: U0 D 9, 14,
and 34m/s. For theoverallpro� le ofCp0

rms , the computationalresults
agree fairly well with the experimental data.

When the results are compared quantitatively,the computational
resultspredicttheamplitudeof pressure� uctuationsto be lower than
the experimental data in the range over 25 m/s. For example, the er-
ror of the amplitude in the case of U0 D 34 m/s, where the amplitude
of the pressure � uctuation takes the maximum value, is about 35%,
which is about 5 dB on the scale of sound pressure levels. Using
� ner grids, the error is somewhat reduced. However, the improve-
ment is not as much on the scale of sound pressure levels, which is
about 0.8 dB in the case of U0 D 34 m/s. This error may be caused
by the numericalmethod employedhere.The implicit scheme in the
time advancementpossiblyprovidesdampingof the acousticmodes.
However, the property of the boundary layer approachingthe open-
ing of the cavity might have some in� uence on the � uctuations.
Several experimental studies (for example, Sarohia9 and Gharib10 )
have examined the relation between the property of the boundary
layer and the vortex shedding under the condition of no resonance
effect. Through these studies, it has been found that the property of
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Calculation

Experiment

Fig. 8 Time history of pressure for U0 = 34 m/s.

Fig. 9 Root mean square of pressure coef� cient � uctuations.

the boundary layer affects the vortex shedding. Especially, the mo-
mentum thickness of the boundary layer is an important parameter.
In the present computation, the boundary layer is laminar because
of a uniform � ow condition applied at inlet boundary, whereas it is
turbulent in the experiment. In both cases, however, the boundary-
layer momentum thickness is so thin compared to the length of the
cavity opening that the pattern of the vortex shedding is assumed to
be in a higher frequencymode or wake mode, accordingto the study
by Gharib.10 In a higher frequency mode, the frequency of the vor-
tex shedding greatly differs from that of the resonance in the range
over 25 m/s. In the wake mode, the vortex shedding does not have
a dominant frequency. Moreover, in our study, very large pressure
� uctuations,the amplitudeof which is much larger than that yielded
by the vortex shedding itself, are excited by coupling with the ef-
fects of the resonance. Thus, it is considered that the in� uence of
the boundary-layerproperty is relatively small in the present study.

In Fig. 10, the dominant frequency of the pressure � uctuations is
plotted vs U0. With the calculationconditions applied in this analy-
sis, it may be expected that the dominant frequency of the pressure
� uctuations varies continuously in proportion to U0 . However, our
results, in which the compressibility effect is taken into account,
show a discontinuous change in frequency. The well-known em-
pirical formula for estimating the vortex-sheddingfrequencies was
presented by Rossitar11 as follows:

Fig. 10 Dominant frequencies of pressure � uctuations.

fc D
n ¡ 0:25
M C 1:75

U0

lc

(25)

where n is the oscillationmode number.This estimationis shown by
the bold solid lines in Fig. 10, and the frequency of the Helmholtz
resonance estimated by Eq. (26) is shown by the thin solid line in
Fig. 10. Thus,

fa D .c=2¼/

q
A

¯¡
hc C 0:82

p
A

¢
V (26)

A is the area of the opening of the cavity and V is the volume of the
cavity. Comparing the results with these estimations, we � nd that
the Helmholtz resonance of the cavity affects the vortex shedding
at the cavity opening and that the oscillation mode n of the vortex
shedding that is close to the resonant frequency of the cavity is
selected, leading to the discontinuouschange in frequency. In other
words, the frequency of the pressure � uctuations is locked in at
the Helmholtz resonant frequency of the cavity. The computational
results capture this distinctive feature of � uid-resonant oscillation
very successfully and agree well with the experimental data. The
error is about 5%. The results using � ner grids are in fair agreement
with those using standard grids.

In Fig. 11, the distributions of the root mean square of non-
dimensionalpressure� uctuationsin the plane of z D 0 are presented
for four cases of incoming � ow velocities. The interval of the con-
tours is 0.05, and the bold line indicates that Cp0

rms ¸ 0:2. In the
incompressible � ow calculation, the pressure � uctuations appear
only around the cavity opening where they are caused by unsteady
vortex shedding. In contrast, the pressure � uctuations also appear
in the cavity in the compressible � ow calculation.The strong pres-
sure � uctuationsare especially apparent in the cases of U0 D 14 and
34 m/s, where the amplitude of pressure � uctuation gives the lo-
cal maximum value. These pressure � uctuations strongly suggest
the occurrence of resonance. In comparison with these cases, the
pressure � uctuation is weak in the case of U0 D 18 m/s, where the
amplitudeof pressure � uctuationgives the local minimum value. In
this case, the coupling between vortex shedding and resonance is
considered to be weak. When the distributions are examined in de-
tail, strongpressure� uctuationsare found in the case ofU0 D 34 m/s
at the back of the upstream edge of the cavity opening and in front
of the downstream edge. In the case of U0 D 14 m/s, strong pres-
sure � uctuations are found also at the center of the opening. This
difference is assumed to be the consequenceof the oscillationmode
change in vortex shedding because such a mode change would lead
to a change in vortex wave length.

In Fig. 12, distributions of the instantaneous dilatation in the
plane of z D 0 are presented for the case of U0 D 34 m/s. As al-
ready mentioned, the additional term in Eq. (9), which expresses
the weak compressibility effect, gives rise to the deviation from the
divergence-free condition of the velocity vector. Thus, it is signif-
icant for the validation of the present method to examine whether
the dilatation is estimated properly in the calculations. In Fig. 12,
contoursare plotted in the range from ¡0.01 to 0.01.The intervalof
the contoursis 0.002. The thin line indicatesa negativevalue,where
the density is decreasing, and the bold line a positive value, where
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Incompressible � ow calculation

U0 = 14 m/s

U0 = 18 m/s

U0 = 34 m/s

Fig. 11 Distributions of root mean square of nondimensionalpressure
� uctuations in z = 0 plane: Cp 0

rms = 0 (white) » 0.5 (black).

the density is increasing. The times A–D indicated in Fig. 8 are the
typical phases in pressure � uctuation. It is seen that instantaneous
dilatation is distributed continuously within and around the cavity.
In the cavity, the velocity level is so low that the dilatation should
be almost in proportion to ¡@p=@t according to Eq. (9). At time A
or C, when the pressure takes the maximum or minimum value and,
thus, @p=@t almost vanishes, the dilatation in the cavity becomes
nearly zero. At time B, when the @p=@t is negative, the dilatation
in the cavity takes a positive value around 0.08, whereas at time
D, when the @p=@t is positive, the dilatation in the cavity takes a
negative value around ¡0.08. These results con� rm that the behav-
ior of the dilatation is consistent with the pressure variation in the

Time A

Time B

Time C

Time D

Fig. 12 Distributions of instantaneous dilatation (divergence of veloc-
ity vectors) in z = 0 plane, where the bold line is positive value and the
thin line is negative value.

present calculation.Moreover, the residual for Eq. (9) in the present
calculation is O.10¡4/ at most. This assures that the dilatation in
the present calculation is not caused by numerical error. Thus, it
is con� rmed that the present result is the natural consequence of a
properly estimated dilatation.

V. Conclusions
We deriveda new equationset that is suited to predictnumerically

the � uid-resonantoscillationat low Mach numbers. The derived set
of equations is essentially the same as the incompressible Navier–
Stokes equations except for an additional term in the continuity
equation that expresses the weak compressibility effect. The most
important point for obtaining an accurate solution is to employ the
numerical method that satis� es the continuity condition with high
accuracy to capture the weak compressibility effect correctly. In
this study, we modi� ed the collocated grid system (con� rmed to
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satisfy the given requirement in the incompressible� ow), making it
applicable to the present equation set. Because the collocated grid
system is one of the pressure-basedmethods that treat the continuity
equation as a constraintequation for pressure, the stiffness problem
that arises in solving the usual compressible � ow equations under
low-Mach-number conditions is also alleviated.

To examine the validity and the accuracy of the present method,
we applied it to the numerical analysis of � ows over a three-
dimensional open cavity. The results show that strong pressure
� uctuationsoccurat speci� c incoming� ow-velocityconditions.We
also demonstrate that the frequency of the pressure � uctuations is
locked in at the Helmholtz resonant frequency of the cavity and
that it varies discontinuously with the incoming � ow velocity due
to a change in the oscillation mode. All of these characteristics
are distinctive features of � uid-resonant oscillation. Although we
used a second-order spatial difference scheme, instead of the usu-
allypreferablehigher-orderdifferenceschemes,andusedan implicit
methodfor the time advancement,we couldpredictthe � ow-velocity
conditionsthat cause the peaks in the nondimensionalpressure � uc-
tuations and the frequency of the pressure � uctuations within an
error of 5%. The maximum sound pressure level obtained by the
calculation is about 5 dB lower than that obtained by the actual ex-
periment,but the change in the amplitudeof the pressure � uctuation
with the incoming � ow velocity agrees well overall with the experi-
mental data. Thus, it is concludedthat the presentmethod is capable
of predicting � uid-resonantoscillation in low-Mach-number � ows.
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