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Numerical Prediction of Fluid-Resonant
Oscillation at Low Mach Number
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A method (governing equation set and numerical procedure) suited to the numerical simulation of fluid-resonant
oscillation at low Mach numbers is constructed. The new equation set has been derived under the assumption that
the compressibility effect is weak. Because the derived equations are essentially the same as the incompressible
Navier-Stokes equations, except for an additional term, we can apply almost the same numerical procedure
developed for incompressible flow equations without difficulty. With application of a pressure-based method that
treats the continuity equation as a constraint equation for pressure, the stiffness problem that arises in solving the
usual compressible flow equations under low Mach number conditions has been alleviated. To verify the present
method, we apply it to the flows over a three-dimensional open cavity. The results show that strong pressure
fluctuations occur at specific flow velocities and that the frequency of the pressure fluctuations is locked in at
the Helmholtz resonant frequency of the cavity. Thus, the present method is confirmed to have the capability of
predicting fluid-resonant oscillation in low-Mach-number flows.

Nomenclature
Cp = pressurecoefficient
c = speed of sound
f = frequency of pressure fluctuation
h; = grid width in i direction
L = reference length
M = Mach number
D = pressure
Re = Reynolds number
S = entropy
t = time
U; = flux velocity componentin i direction
U, = reference velocity
u; = velocity componentin i direction
(ula U, M3) = (M, v, w)
X; = Cartesian coordinate in i direction
At = dimensionlesstime step
" = dynamic viscosity
p,p’ = density
Subscript
0 = reference value
Superscript
n = number of time steps

I. Introduction

LUID-RESONANT oscillation (Fig. 1) is a very interesting
phenomenon, from both the physical and the engineering view-
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points. Even in low-Mach-number flows, once this phenomenonoc-
curs, it sometimes fatally damages the device. Therefore, it is very
important to predict whether fluid-resonantoscillation occurs in the
operating condition of fluid machinery, as well as its magnitude if
it does occur.

For example, when a vehicle runs at specific speeds with the sun-
roof or window open, the so-called wind-throb phenomenon occurs
inthe vehiclecabin.It generatesa highnoiselevel with relativelylow
frequency, ranging from 10 to 50 Hz. Its magnitude sometimes ex-
ceeds 130dB, causing unacceptablediscomfort to the driver and the
passengers. This phenomenon is considered to be the kind of fluid-
resonant oscillation categorized by Rockwell and Naudascher.! In
that phenomenon, the periodic vortex shedding over the opening of
the sunroof or window excites the resonance in the vehicle cabin,
which behaves like a Helmholtz resonator. However, the wave ef-
fects of the resonance influence the vortex shedding, which means
that they are strongly coupled with each other. Such a flow is ob-
served and of interest in many areas of engineering, for example,
landing-gear wells and aircraft surface-mounted instrumentation.

To predict the wind-throb phenomenon numerically, there have
been attempts® to perform incompressible unsteady simulations.
From such simulations, however, one can never predict the phe-
nomenon by which an extremely large noise is generated at specific
speeds and in a specific frequency range because the fluid-resonant
oscillation can not be essentially simulated without considering the
compressibility effect of the flow. Nevertheless, compressible un-
steady simulation has the possibility of predicting fluid-resonant
oscillation theoretically. However, it is not feasible to perform full
compressible unsteady simulation of the flow around a vehicle be-
cause it results in the so-called stiffness problem in low-Mach-
number flows, which creates severe convergence problems leading
to inefficiency and inaccuracy.

Several approacheshave been developed for simulating the aero-
acoustic sound at low Mach numbers, which also results from the
weak compressibility of the flow. For example, Hardin and Pope®
introduced a scheme called expansion about incompressible flow
(EIF). The EIF approach splits the flowfields into an incompressible
part and a perturbation part. However, this approach does not allow
acoustic backscatterof the perturbationpart into the incompressible
part and is considered not to have the capability of predicting fluid-
resonant oscillation.

Thus, in this paper, we derive new basic equations suited for the
simulation of fluid-resonant oscillation at low Mach numbers. The
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Fig.1 Fluid-resonant oscilla-
tion.

equations are derived from the compressible Navier-Stokes equa-
tions by assuming that the compressibilityeffectis weak and related
to the pressure deviation from the reference value. The resultantun-
known variables of the equations are u, v, w, and p, so that we
can apply almost the same numerical procedure developed for the
incompressible flow equations. Therefore, the computational cost
of the present method is comparable to that of the incompressible
flow calculation. To verify the capability of the present method in
simulating fluid-resonant oscillation, we apply it to flows over a
three-dimensionalopen cavity. When the computational results are
compared with the experimental data, the validity of the present
method is carefully examined.

II. Methods

A. Derivation of Basic Equations
Consider compressible Navier-Stokes equations
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in which a tilde indicates dimensional value. We introduce the fol-
lowing dimensionless values:

p=—po/(pU2),

Xi = iz/L,

,0/=(,5—,50)/,50, u; =u; /Uy

t=1U,/L
Note that the density p’ and the pressure p are the dimensionless
values of the deviation from the reference value. By introducing

thesedimensionlessvalues, we canrewritethe compressibleNavier—
Stokes equations as follows:
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To obtain a new equation set suited to the simulation of fluid-
resonant oscillation in low-Mach-number flows, we make the fol-
lowing assumptions in the preceding equations:

1) For the density, the deviation from the reference value is
small enough to assume p’ < 1 because p’ = O (M?) in low-Mach-
number flows. Thus, it is expressed as

1/(1+p)~ 1 7)

2) When the entropy is assumed to be constant, the deviation in
density can be related to the deviation in pressure as follows:
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3) Because du,, /9x,, = O(M?) as seen in Eq. (9), the effect of
that term in Eq. (6) is negligibly small in comparison with the term
ou; /dx; + du; /dx; in low-Mach-number flows.

These assumptions, which are considered to be reasonable in
relatively high-Reynolds-number flows without a significant heat
source, enable us to obtain the following new equation set:
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In the limit M — 0, Egs. (9-11) becomes identical to the incom-
pressible Navier-Stokes equations. In what follows, Egs. (9-11)
are employed as the basic equations in the present study.

B. Characteristics of Present Basic Equations

It is apparent that the derived equations are essentially the same
as the incompressible Navier-Stokes equations except for the addi-
tional term thatexpressesthe deviationfrom the continuity condition
in the incompressibleflow. This termis O(M?) and disappearsin the
incompressible flow condition. However, we maintain this term in-
tentionally because it is expected to enable us to introduce the weak
compressibility effect into the flow calculation.In other words, only
this term can yield the essential difference from the incompressible
flow calculationin the present study.

Next, we compare these equations with the compressible Navier—
Stokes equations. The dimensionless pressure p in the presentbasic
equations denotes the deviation from the reference value. The cor-
responding dimensional value p — p is estimated as follows, if we
suppose the low-Mach-number condition:

1 — bol = O(3U3) = O(M? o) ~ OM*f)  (12)

This describes that the pressure deviation in the present basic equa-
tions is M? times as small as the pressure p in the compressible
Navier-Stokes equations. In the same way, the dimensional value
0 — po corresponding to the dimensionless density p’, which is re-
lated to the pressure p in the present basic equations, is estimated
as follows:

16 — Aol ~ O(M?3y) ~ O(M*f5) (13)

Itis shown that the density deviationin the presentbasic equationsis
also M? times as small as the density £ in the compressible Navier-
Stokes equations. Consequently, it is evident that the computation
based on the present basic equations has a great advantage over the
computation based on the compressible Navier-Stokes equations.
For example, for the flow around ground vehicles where the Mach
number is 0.1 at most, we can directly treat the value, which is
approximately 0.01 times as small as in the computation based on
the full compressible Navier-Stokes equations. This yields a great
advantagein computationalefficiency or computationalaccuracyin
practical use.

C. Numerical Methods

As mentionedbefore, the weak compressibilityeffectis takeninto
consideration by the additional term in Eq. (9). Moreover, because
the unknown variables of the present basic equations are u, v, w,
and p, we can apply almost the same numerical procedure devel-
oped for the incompressible flow calculation. The most important
pointin solving the presentbasic equationsis to employ a numerical
method that satisfies the continuity condition in the incompressible
flow calculation with high accuracy to capture the weak compress-
ibility effect correctly because a numerical error in the continuity
condition can possibly hide the compressibility effect. To satisfy
this requirement, we use a collocated grid system,*> which is one
of the pressure-based methods used mainly for incompressible flow
calculations. The collocated grid system is ascertained to satisfy
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the continuity condition with high accuracy in incompressible flow
calculationsand is also confirmed to yield a nonoscillatory pressure
field. We modify the collocated grid systemapplicableto the present
basic equations as described next.

To simplify the description, we consider the rectangular grids
shown in Fig. 2. The collocated grid system defines the velocity
components #; and the pressure p at the center of the cells and, at
the same time, arranges the auxiliary flux velocity components U;
at the center of the cell faces. The momentum equations are solved
for u;. The continuity equation is evaluated by using U;, which is
interpolated from u; by a special procedure’ The flux velocity U;
is then also used as the convection velocity in the momentum equa-
tions, thatis, u ; in the second term of Eq. (10). To be consistentwith
this treatment, we also use U; as u; in the third term of Eq. (10),
which disappears in the incompressible flow condition. For spa-
tial discretization,a second-ordercentral difference scheme is used
except for the convective term of Eq. (10), to which the QUICK
scheme is applied. We employ no turbulence model in this analysis.
This method is often called coherent structure capturing,’ which is
able to capture the vortex structures with high accuracy if the size
of vortex is relatively large.

The Crank-Nicolson method is employed for the time advance-
mentof Eq. (10)exceptforthe pressureterm, for which the backward
Euler method is used. A simplified marker and cell-like method is
used for the coupling between the velocity and the pressure field. In
this method, the continuity equationis applied to the next time step,
n + 1. The additional term in the continuity equation [the first term
of Eq. (9)] is discretized as follows:
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where §; /6, x; is the spatial discretizationby means of the second-
order central difference scheme.

The whole solution procedure is summarized as follows:

1) The intermediate velocity u; is obtained by using the pressure
at the previous time step n:
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2) The contribution from the pressure term is subtracted from the
intermediate velocity u;:
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3) The intermediate flux velocity U, ** at the center of the cell
faces is interpolated from u}* at the center of the cells.

4) The following equation is solved for the pressure p" ™! at the
next time step:
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5) The velocityat the nexttime stepis evaluatedusing the obtained
pressure p" 1
apn +1
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uf.”'l =u* — At (19)
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Fig. 3 Three-dimensional open cavity.
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By this procedure, one time step is advanced. In the limit M — 0,
Eq. (18) becomes identical to the well-known Poisson equation for

pressure:
82pn+1 _LBUI**

ijz. Af 0x;

2n

Because the pressure is fully implicitly solved by using Eq. (18),
the stiffness problem caused from the disparity between the acoustic
timescale and the convectiveor viscous timescale can be alleviated.
For simplicity, we explained the method for rectangulargrids. How-
ever, it is easily applied to curvilinear grids in the same manner, as
shown by Rhie and Chow.’

III. Experimental and Computational Arrangements

A. Three-Dimensional Open Cavity Flows

To verify whether the present method can truly simulate fluid-
resonantoscillationin low-Mach-numberflows, we apply it to flows
over a three-dimensional open cavity, which can be considered to
simulate a vehicle cabin with a sunroof opening. The detailed shape
of the open cavity is shown in Fig. 3. The experiments are per-
formed for comparison with the computations. The experimental
model of the opencavity is tested in a closed-returnwind tunnel with
a 0.4 x 0.4 m rectangular open test section, and the pressure fluc-
tuation is measured at the center of the cavity bottom by a pressure
sensor. The measurements are made for various levels of incoming
flow velocity within a range of 6-54 m/s.

B. Calculation Conditions

The calculationsare performedcorrespondingto the experimental
flow conditions. To simplify the calculation conditions, we fix the
Reynolds number at 2 x 10° based on the opening length /. and the
representativevelocity 30 m/s and vary only the Mach number with
a change in incoming flow velocity U,. This setting of conditionsis
assumed to yield little difference from the measurements because
the flows have little dependence on the Reynolds number, at least
behind the separation at the upstream edge of the cavity opening. In
these conditions, the change in the results, according to the change
in the incoming flow velocity, is caused only by the additional term
in Eq. (9). The speed of sound is set at 343 m/s.

Figure 4 shows the computational domain. The boundary condi-
tions are specified as follows: 1) inlet, uniform flow (u =1, v=0,
w =0, p=0); 2) outlet, Neumann condition (du; /dx = 0); 3) solid
wall, artificial wall condition; 4) upper wall, slip condition (v =0,
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du; /3y =0); and 5) spanwise direction, periodic boundary condi-
tion. The computational domain approximately corresponds to the
experimental model. The upper wall is set 10 x [, above the opening
of the cavity. Because the periodic boundary conditionis applied in
the spanwise direction, the width in the spanwise direction some-
what differs from that in the experimental model. Note that we set
the Dirichlet condition for pressure at the inlet boundary because
the present basic equations involve the time-differential term of the
pressure that does not appear in the incompressible Navier-Stokes
equations.

The artificial wall condition used in this analysisis the following
three-layer wall condition modified from the two-layer wall condi-
tion proposed by Werner and Wengle:

ut =yt (" <¥h) (22)
ut = Aly*t8! (y:] <yt < y:’z) (23)
ut = A2y*B? (yc+2 < y+)
v = A1V/0-BD, V4 = (A2/AD)V/B1-82
il il
ut =u,,/ru’:, y* = Ret;y,, Al =2.7
A2 =386, Bl =1, B2=1 (24)

where u, is the velocity component parallel to the wall, y, is the
distance from the wall, and t,, is the wall friction stress. This type of
wall condition is equivalent to the no-slip condition when the grid
resolutionin the direction normal to the wall surface is high enough.
On the other hand, when the grid resolutionis not sufficiently high,
it is expected that this wall condition suppresses the decrease in the
calculation accuracy. Note that, in this analysis, the grid resolution
is relatively coarse only in the spanwise directionin the cavity. This
grid arrangement is assumed to have little significant influence on
the results. Except for the limited part, fine grids are used, where
the wall condition becomes substantially identical with the no-slip
wall condition.

We also employ the overlaid grid system® to facilitate grid gener-
ation and to reduce the computational cost. The computational do-
main is divided into three subgrid regions shown in Fig. 5. Grids 1
and?2 are shown in Fig. 6. The number of pointsof each grid is shown
in Table 1. The total number of grid points is about 430,000. The
minimum grid spacing is 1 x 1073/,, and the dimensionless time
step is set to 1 x 10731./U,. As the initial condition, the result of
the incompressible flow calculationis used.

To check grid convergence, we also execute the calculation with
finer grids for Uy =22, 30, 34, 38, and 46 m/s. The number of grid
points is shown in Table 1. The number of points of grids 1 or 2 is
over three times as large as that in the standard case. On the other

Table1 Computational grid points

Grid Grid points
1 76 x 51 x 52=201,552
(Fine case) (100 x 73 x 86 =627,800)
2 66 x 50 x 28=92,400
(Fine case) (92 x 73 x 46=308,936)
3 100 x 44 x 30=132,000
(Fine case) D)

Grid3

Fig. 5 Overlaid grid system.

Grid 1 Grid 2
Fig.6 Computational grids.
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hand, grid 3 is the same grid as in the standard case because grid 3
is considered to have smaller influence on the pressure fluctuation
at the measuring point than grids 1 and 2. In this case, the minimum
grid spacing is 5 x 107*/., and the dimensionless time step is set to
5% 10741,/ Uy.

IV. Results and Discussion

In Fig. 7, the calculated pressure fluctuations at the center of the
cavity bottom are compared with the experimental data in the scale
of sound pressure levels (decibels). Note that, in what follows, U, is
defined by Uy, = M c. Some peaks are clearly recognized in the plot
of pressure fluctuations vs flow velocity. The computational results
very successfullypredict this feature. Although the flow at the center
of the cavity bottomis very weak, the pressurefluctuationlevel at the
peaksis very high. Moreover, as shown in Fig. 8, the time history of
pressureunder those conditionshas strong periodicityandis almosta
sinecurve. These results suggestthat the strong pressure fluctuations
are probably caused by resonance. Such a fluctuationhas never been
detected in the results of incompressible flow calculation, which
is shown by the dotted line in Fig. 7. Thus, it is thought that the
peaks correspondto the occurrence of fluid-resonantoscillations.In
Fig. 9, the pressure fluctuations are shown in terms of the root mean
squareof pressurecoefficientfluctuationsCp,  , wherethe peaksare
more clearly identified. The computational results agree well with
the experimental data on the velocities at which the peaks occur.
The peaks are found to occur at three velocity levels: Uy =9, 14,
and 34 m/s. For the overallprofile of Cp; , the computationalresults
agree fairly well with the experimental data.

When the results are compared quantitatively, the computational
resultspredictthe amplitudeof pressurefluctuationsto be lower than
the experimental data in the range over 25 m/s. For example, the er-
ror of the amplitude in the case of Uy = 34 m/s, where the amplitude
of the pressure fluctuation takes the maximum value, is about 35%,
which is about 5 dB on the scale of sound pressure levels. Using
finer grids, the error is somewhat reduced. However, the improve-
ment is not as much on the scale of sound pressure levels, which is
about 0.8 dB in the case of Uy =34 m/s. This error may be caused
by the numerical method employed here. The implicit scheme in the
time advancementpossibly providesdamping of the acoustic modes.
However, the property of the boundary layer approaching the open-
ing of the cavity might have some influence on the fluctuations.
Several experimental studies (for example, Sarohia’ and Gharib'®)
have examined the relation between the property of the boundary
layer and the vortex shedding under the condition of no resonance
effect. Through these studies, it has been found that the property of
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the boundary layer affects the vortex shedding. Especially, the mo-
mentum thickness of the boundary layer is an important parameter.
In the present computation, the boundary layer is laminar because
of a uniform flow condition applied at inlet boundary, whereas it is
turbulent in the experiment. In both cases, however, the boundary-
layer momentum thickness is so thin compared to the length of the
cavity opening that the pattern of the vortex sheddingis assumed to
be in a higher frequency mode or wake mode, according to the study
by Gharib.!° In a higher frequency mode, the frequency of the vor-
tex shedding greatly differs from that of the resonance in the range
over 25 m/s. In the wake mode, the vortex shedding does not have
a dominant frequency. Moreover, in our study, very large pressure
fluctuations, the amplitude of which is much larger than that yielded
by the vortex shedding itself, are excited by coupling with the ef-
fects of the resonance. Thus, it is considered that the influence of
the boundary-layerproperty is relatively small in the present study.

In Fig. 10, the dominant frequency of the pressure fluctuationsis
plotted vs U,. With the calculation conditions applied in this analy-
sis, it may be expected that the dominant frequency of the pressure
fluctuations varies continuously in proportion to U,. However, our
results, in which the compressibility effect is taken into account,
show a discontinuous change in frequency. The well-known em-
pirical formula for estimating the vortex-shedding frequencies was
presented by Rossitar'! as follows:

300 . . !
—6— calc.
250 | n=s3 4 calc.(fine) 1
B n=2 % exp.
- —— Rossiter
200 £ e 1
= X
w150 | X % ]
100 | A ™ 6q.(26)
50 1
0 L L 1 L L
0 10 20 30 40 50 60

Ug(m/sec)

Fig. 10 Dominant frequencies of pressure fluctuations.

n—025 U,
= 0 25
fe=Ti7s . (25)

where n is the oscillationmode number. This estimationis shown by
the bold solid lines in Fig. 10, and the frequency of the Helmholtz
resonance estimated by Eq. (26) is shown by the thin solid line in
Fig. 10. Thus,

f, = (c/2n)\/A/(hC +0.82VA)V (26)

A is the area of the opening of the cavity and V is the volume of the
cavity. Comparing the results with these estimations, we find that
the Helmholtz resonance of the cavity affects the vortex shedding
at the cavity opening and that the oscillation mode n of the vortex
shedding that is close to the resonant frequency of the cavity is
selected, leading to the discontinuouschange in frequency. In other
words, the frequency of the pressure fluctuations is locked in at
the Helmholtz resonant frequency of the cavity. The computational
results capture this distinctive feature of fluid-resonant oscillation
very successfully and agree well with the experimental data. The
error is about 5%. The results using finer grids are in fair agreement
with those using standard grids.

In Fig. 11, the distributions of the root mean square of non-
dimensional pressure fluctuationsin the plane of z =0 are presented
for four cases of incoming flow velocities. The interval of the con-
tours is 0.05, and the bold line indicates that Cp/ > 0.2. In the
incompressible flow calculation, the pressure fluctuations appear
only around the cavity opening where they are caused by unsteady
vortex shedding. In contrast, the pressure fluctuations also appear
in the cavity in the compressible flow calculation. The strong pres-
sure fluctuations are especially apparentin the cases of Uy = 14 and
34 m/s, where the amplitude of pressure fluctuation gives the lo-
cal maximum value. These pressure fluctuations strongly suggest
the occurrence of resonance. In comparison with these cases, the
pressure fluctuation is weak in the case of Uy = 18 m/s, where the
amplitude of pressure fluctuation gives the local minimum value. In
this case, the coupling between vortex shedding and resonance is
considered to be weak. When the distributions are examined in de-
tail, strong pressure fluctuationsare foundin the case of Uy = 34 m/s
at the back of the upstream edge of the cavity opening and in front
of the downstream edge. In the case of Uy =14 m/s, strong pres-
sure fluctuations are found also at the center of the opening. This
differenceis assumed to be the consequenceof the oscillationmode
change in vortex shedding because such a mode change would lead
to a change in vortex wave length.

In Fig. 12, distributions of the instantaneous dilatation in the
plane of z=0 are presented for the case of Uy =34 m/s. As al-
ready mentioned, the additional term in Eq. (9), which expresses
the weak compressibility effect, gives rise to the deviation from the
divergence-free condition of the velocity vector. Thus, it is signif-
icant for the validation of the present method to examine whether
the dilatation is estimated properly in the calculations. In Fig. 12,
contours are plotted in the range from —0.01 to 0.01. The interval of
the contoursis 0.002. The thin line indicates a negative value, where
the density is decreasing, and the bold line a positive value, where
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Uyp=14m/s

Uy =18 m/s

Uyp=34m/s

Fig.11 Distributions of root mean square of nondimensional pressure
fluctuations in z = 0 plane: Cp/ ., = 0 (white) ~ 0.5 (black).

the density is increasing. The times A-D indicatedin Fig. 8 are the
typical phases in pressure fluctuation. It is seen that instantaneous
dilatation is distributed continuously within and around the cavity.
In the cavity, the velocity level is so low that the dilatation should
be almost in proportionto —dp/dt according to Eq. (9). At time A
or C, when the pressure takes the maximum or minimum value and,
thus, dp/dt almost vanishes, the dilatation in the cavity becomes
nearly zero. At time B, when the dp/dt is negative, the dilatation
in the cavity takes a positive value around 0.08, whereas at time
D, when the dp/dt is positive, the dilatation in the cavity takes a
negative value around —0.08. These results confirm that the behav-
ior of the dilatation is consistent with the pressure variation in the

Time A

Time B

Time C

Time D

Fig. 12 Distributions of instantaneous dilatation (divergence of veloc-
ity vectors) in z = 0 plane, where the bold line is positive value and the
thin line is negative value.

present calculation. Moreover, the residual for Eq. (9) in the present
calculation is ©(107*) at most. This assures that the dilatation in
the present calculation is not caused by numerical error. Thus, it
is confirmed that the present result is the natural consequence of a
properly estimated dilatation.

V. Conclusions

We deriveda new equationset that is suited to predict numerically
the fluid-resonantoscillation at low Mach numbers. The derived set
of equations is essentially the same as the incompressible Navier—
Stokes equations except for an additional term in the continuity
equation that expresses the weak compressibility effect. The most
important point for obtaining an accurate solution is to employ the
numerical method that satisfies the continuity condition with high
accuracy to capture the weak compressibility effect correctly. In
this study, we modified the collocated grid system (confirmed to
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satisfy the given requirement in the incompressible flow), making it
applicable to the present equation set. Because the collocated grid
systemis one of the pressure-basedmethods that treat the continuity
equation as a constraintequation for pressure, the stiffness problem
that arises in solving the usual compressible flow equations under
low-Mach-number conditions is also alleviated.

To examine the validity and the accuracy of the present method,
we applied it to the numerical analysis of flows over a three-
dimensional open cavity. The results show that strong pressure
fluctuationsoccurat specific incoming flow-velocity conditions. We
also demonstrate that the frequency of the pressure fluctuations is
locked in at the Helmholtz resonant frequency of the cavity and
that it varies discontinuously with the incoming flow velocity due
to a change in the oscillation mode. All of these characteristics
are distinctive features of fluid-resonant oscillation. Although we
used a second-order spatial difference scheme, instead of the usu-
ally preferablehigher-orderdifferenceschemes, and used an implicit
methodfor the time advancement, we could predictthe flow-velocity
conditionsthat cause the peaks in the nondimensionalpressure fluc-
tuations and the frequency of the pressure fluctuations within an
error of 5%. The maximum sound pressure level obtained by the
calculationis about 5 dB lower than that obtained by the actual ex-
periment, but the change in the amplitude of the pressure fluctuation
with the incoming flow velocity agrees well overall with the experi-
mental data. Thus, itis concluded that the present method is capable
of predicting fluid-resonantoscillation in low-Mach-number flows.
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